Reinforcement Learning of Multi-Issue Negotiation Dialogue Policies

نویسندگان

  • Alexandros Papangelis
  • Kallirroi Georgila
چکیده

We use reinforcement learning (RL) to learn a multi-issue negotiation dialogue policy. For training and evaluation, we build a hand-crafted agenda-based policy, which serves as the negotiation partner of the RL policy. Both the agendabased and the RL policies are designed to work for a large variety of negotiation settings, and perform well against negotiation partners whose behavior has not been observed before. We evaluate the two models by having them negotiate against each other under various settings. The learned model consistently outperforms the agenda-based model. We also ask human raters to rate negotiation transcripts between the RL policy and the agenda-based policy, regarding the rationality of the two negotiators. The RL policy is perceived as more rational than the agenda-based policy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reinforcement Learning of Two-Issue Negotiation Dialogue Policies

We use hand-crafted simulated negotiators (SNs) to train and evaluate dialogue policies for two-issue negotiation between two agents. These SNs differ in their goals and in the use of strong and weak arguments to persuade their counterparts. They may also make irrational moves, i.e., moves not consistent with their goals, to generate a variety of negotiation patterns. Different versions of thes...

متن کامل

Reinforcement Learning of Argumentation Dialogue Policies in Negotiation

We build dialogue system policies for negotiation, and in particular for argumentation. These dialogue policies are designed for negotiation against users of different cultural norms (individualists, collectivists, and altruists). In order to learn these policies we build simulated users (SUs), i.e. models that simulate the behavior of real users, and use Reinforcement Learning (RL). The SUs ar...

متن کامل

Single-Agent vs. Multi-Agent Techniques for Concurrent Reinforcement Learning of Negotiation Dialogue Policies

We use single-agent and multi-agent Reinforcement Learning (RL) for learning dialogue policies in a resource allocation negotiation scenario. Two agents learn concurrently by interacting with each other without any need for simulated users (SUs) to train against or corpora to learn from. In particular, we compare the Qlearning, Policy Hill-Climbing (PHC) and Win or Learn Fast Policy Hill-Climbi...

متن کامل

Learning Culture-Specific Dialogue Models from Non Culture-Specific Data

We build culture-specific dialogue policies of virtual humans for negotiation and in particular for argumentation and persuasion. In order to do that we use a corpus of non-culture specific dialogues and we build simulated users (SUs), i.e. models that simulate the behavior of real users. Then using these SUs and Reinforcement Learning (RL) we learn negotiation dialogue policies. Furthermore, w...

متن کامل

Reinforcement Learning of Multi-Party Trading Dialog Policies

Trading dialogs are a kind of negotiation in which an exchange of ownership of items is discussed, and these kinds of dialogs are pervasive in many situations. Recently, there has been an increasing amount of research on applying reinforcement learning (RL) to negotiation dialog domains. However, in previous research, the focus was on negotiation dialog between two participants only, ignoring c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015